Radar Systems Engineering
Lecture 10 Part 2
Radar Clutter

Dr. Robert M. O’Donnell
IEEE New Hampshire Section
Guest Lecturer
Block Diagram of Radar System

Transmitter

- Power Amplifier
- Waveform Generation
- T/R Switch

Signal Processor Computer

- Pulse Compression
- Clutter Rejection (Doppler Filtering)

General Purpose Computer

- Tracking
- Parameter Estimation
- Thresholding
- Detection

User Displays and Radar Control

- Receiver
- A/D Converter

Data Recording

Propagation Medium

- Target Radar Cross Section
- Antenna

Buildings (Radar Clutter)

Photo Image
Courtesy of US Air Force
Used with permission.
Outline

• Motivation

• Backscatter from unwanted objects
 – Ground
 – Sea
 – Rain
 – Birds and Insects
Attributes of Rain Clutter

• Rain both attenuates and reflects radar signals

• Problems caused by rain lessen dramatically with longer wavelengths (lower frequencies)
 – Much less of an issue at L-Band than X-Band

• Rain is diffuse clutter (wide geographic extent)
 – Travels horizontally with the wind
 – Has mean Doppler velocity and spread

![Diagram of transmitted and reflected electromagnetic waves](TransmissionAndReflection.png)
Clear Day (No Rain)

Airport Surveillance Radar
S Band
Detection Range - 60 nmi on
a 1 m² target

10 nmi Range Rings on PPI Display
August 1975, FAA Test Center
Atlantic City, New Jersey

Courtesy of FAA
PPI Display Radar Normal Video

Clear Day (No Rain)

Airport Surveillance Radar
S Band
Detection Range - 60 nmi on
a 1 m² target

Day of Heavy Rain

10 nmi Range Rings on PPI
Display
August 1975, FAA Test
Center
Atlantic City, New Jersey

Courtesy of FAA

Courtesy of FAA
Reflectivity of Uniform Rain

\(\sigma \) in dBm\(^2/m^3\)

<table>
<thead>
<tr>
<th>Rain Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S 3.0 GHz</td>
</tr>
<tr>
<td>Drizzle, 0.25 mm/hr</td>
<td>−102</td>
</tr>
<tr>
<td>Light Rain, 1 mm/hr</td>
<td>−92</td>
</tr>
<tr>
<td>Moderate, 4 mm/hr</td>
<td>−83</td>
</tr>
<tr>
<td>Heavy Rain, 16 mm/hr</td>
<td>−73</td>
</tr>
</tbody>
</table>

Figure by MIT OCW.

- Rain reflectivity increases as \(f^4 \) (or \(1/\lambda^4 \))
 - Rain clutter is an issue at S-Band and a significant one at higher frequencies
Effect of Circular Polarization on Rain Backscatter

- **Assumption:** Rain drops are spherical
- Circular polarization is transmitted (assume RHC),
 - Reflected energy has opposite sense of circular polarization (LHC)
- Radar configured to receive only the sense of polarization that is transmitted (RHC)
 - Then, rain backscatter will be rejected (~15 dB)
- Most atmospheric targets are complex scatterers and return both senses of polarization; equally (RHC & LHC)
 - Target echo will be significantly attenuated
Attenuation in Rain

Rainfall Characterization
- Drizzle – 0.25 mm/hr
- Light Rain – 1 mm/hr
- Moderate Rain – 4 mm/hr
- Heavy Rain – 16 mm/hr
- Excessive rain – 40 mm/hr

In Washington DC
- 0.25 mm/hr exceeded 450 hrs/yr
- 1 mm/hr exceeded 200 hrs/yr
- 4 mm/hr exceeded 60 hrs/yr
- 16 mm/hr exceeded 8 hrs/yr
- 40 mm/hr exceeded 2.2 hrs/yr

Adapted from Skolnik, Reference 6
Reflectivity vs. Frequency

- Rain (15 mm/hr)
- 1 m^2 on ASR radar (10kft at 30 nmi)
- Insects (Maximum Observed)
- Refractivity Fluctuations (Maximum Observed)
Reflectivity of Uniform Rain

\(\sigma \text{ in dBm}^2/\text{m}^3 \)

<table>
<thead>
<tr>
<th>Rain Type</th>
<th>S 3.0 GHz</th>
<th>C 5.6</th>
<th>X 9.3</th>
<th>Ku 15.0</th>
<th>Ka 35</th>
<th>W 95</th>
<th>mm 140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Stratus Clouds</td>
<td>-100</td>
<td>-85</td>
<td>-69</td>
<td>-62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drizzle, 0.25 mm/hr</td>
<td>-102</td>
<td>-91</td>
<td>-81</td>
<td>-71</td>
<td>-58</td>
<td>-45</td>
<td>-50</td>
</tr>
<tr>
<td>Light Rain, 1 mm/hr</td>
<td>-92</td>
<td>-81.5</td>
<td>-72</td>
<td>-62</td>
<td>-49</td>
<td>-43</td>
<td>-39</td>
</tr>
<tr>
<td>Moderate, 4 mm/hr</td>
<td>-83</td>
<td>-72</td>
<td>-62</td>
<td>-53</td>
<td>-41</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>Heavy Rain, 16 mm/hr</td>
<td>-73</td>
<td>-62</td>
<td>-53</td>
<td>-45</td>
<td>-33</td>
<td>-35</td>
<td>-37</td>
</tr>
</tbody>
</table>

\[\sigma = \frac{\pi^5}{\lambda^4} |K|^2 \sum D^6 \]

\[\lambda = \text{Wavelength} \]

\[|K|^2 = \left| \frac{n^2 - 1}{n^2 + 1} \right| \]

\[= 0.93 \text{ For Rain} \]

\[D = \text{Droplet Diameter} \]

* Approximate

Date Table Adapted from Nathanson, Reference 3
Heavy Uniform Rain – Backscatter Coefficient

Amplitude (Linear Units)

Slant Range, nmi

Altitude

11.5 k-ft 12.1 k-ft 12.8 k-ft

C Band
Azimuth 17° Elevation 6° Pulse Width 1.6 μsec

C Band
Azimuth 336° Elevation 34° Pulse Width 0.2 μsec

* Theoretical Rainfall Rate

Adapted from Nathanson, Reference 3

 IEEE New Hampshire Section
 IEEE AES Society
• Rain is not Gaussian
• Mean velocity varies as storm moves by radar
• In these examples the rainfall rate was approximately 20 mm/hr
• Winds 30 kts on ground, 50 kts at 6000 ft
Effects of Wind Shear on the Doppler Spectrum

Cross Sectional Sketch of Radar Beam With Wind Blown Rain

Velocity Spectrum Of Rain

Wind Velocity $v_w(h)$

Vertical Gradient of Wind (Wind Shear)

V_{R1} V_{R2}

ΔV_R

V_{R2} V_{R0} V_{R1}

Relative Power 0.5

Adapted from Nathanson, Reference 3
Nathanson Rain Spectrum Model

- Nathanson model for velocity spread of rain

\[
\sigma_v = \sqrt{\sigma_{Shear}^2 + \sigma_{Turb}^2 + \sigma_{Beam}^2 + \sigma_{Fall}^2}
\]

\[
\sigma_{Shear} = 0.42 k R \phi (m/s) \quad (\sigma_{Shear} \leq 6.0)
\]

\[
\sigma_{Turb} = 1.0 (m/s)
\]

\[
\sigma_{Beam} = 0.42 w_o \theta \sin \beta (m/s)
\]

\[
\sigma_{Fall} = 1.0 \sin \psi (m/s)
\]

- Typical Values:

\[
\sigma_{Shear} \approx 3.0 \text{ m/s} \quad \sigma_{Beam} \approx 0.25 \text{ m/s}
\]

\[
\sigma_{Turb} \approx 1.0 \text{ m/s} \quad \sigma_{Fall} \approx 1.0 \text{ m/s}
\]

\[
\sigma_v \approx 3.3 \text{ m/s}
\]

Adapted from Nathanson, Reference 3
Outline

• Motivation

• Backscatter from unwanted objects
 – Ground
 – Sea
 – Rain
 – Birds and Insects
Bird Clutter

• General properties

• Bird populations and density
 – Migration / Localized travel
 Land / Ocean
 – Variations
 Geography, Height, Diurnal, Seasonal etc

• Radar Cross Section
 – Mean / Fluctuation properties

• Velocity / Doppler Distribution

• Effects of Birds on radar
 – Sensitivity Time Control (STC)
General Properties of Birds

- Good RCS model for bird
 - Flask full of salt water
 - Expanding and contracting body, at frequency of wing beat, is the dominant contributor to individual bird radar cross section fluctuations

- Since many birds are often in the same range-azimuth cell, the net total backscatter is the sum of contribution from each of the birds, each one moving in and out of phase with respect to each other.
General Properties of Birds

• Since birds move at relatively low velocities, their speed, if measured, can be used to preferentially threshold out the low velocity birds.
 – Direct measurement of Doppler velocity
 – Velocity from successive measurement of spatial position Range and angle

• Even though the radar echo of birds is relatively small, birds can overload a radar with false targets because:
 – Often bird densities are quite large, and
 – Bird cross sections often fluctuate to large values.

• A huge amount of relevant research has been done over the last 20 years to quantify:
 – The populations of bird species, their migration routes, and bird densities, etc., using US Weather radar data (NEXRAD)
 – Major Laboratory efforts over at least the last 20 years at Clemson University and Cornell University
Bird Clutter

• General properties

• Bird populations and density
 – Migration / Localized travel
 Land / Ocean
 – Variations
 Geography, Height, Diurnal, Seasonal etc

• Radar Cross Section
 – Mean / Fluctuation properties

• Velocity / Doppler Distribution

• Effects of Birds on radar
 – Sensitivity Time Control (STC)
Along the Gulf Coast, during the breeding season, wading and sea bird colonies exist that have many tens of thousands of birds. Ten thousand birds are quite common. These birds are large; weighing up to 2 lbs and having wingspreads from 1 to 6 feet.
In the lower Mississippi Valley, over 60 blackbird roosts have been identified with greater than 1 million birds each. Many smaller roosts also exist. These birds disperse several tens of miles for feeding each day.
Density of Migrating North American Birds

Evening of 3 - 4 October 1952

Data Characteristics
- 286 Sites
- 1209 Observations
- ~3000 Count-hours
- Count = #/mi²/hr

Adapted from Pollon, reference 7
Migratory Bird Patterns
(Off the US New England Coast)

Bird migrations have been tracked by radars from the Northeast United States to South America and the Caribbean have on Bermuda at altitudes of 17 kft.

Circles note coverage of 2 radars, one at tip of Cape Cod, the other, offshore on a “Texas tower.”

Adapted from Eastwood reference 8
For about 2 1/2 months in the Spring and Autumn, there is heavy bird migration, to and from, Europe and Africa

Adapted from Eastwood reference 8
Altitude distributions differ for migrating and non-migrating birds.

The presence of cloud cover effects the bird height distribution.

Distance of their migration can influence migration altitude (NE United States to South America).

Over land vs. over sea migration.

Day vs. night migration.

Non-migrating birds stay closer to the ground.

Adapted from Eastwood, reference 8.
Example of “Ring Roost” Phenomena

Note intensity scale in dBZ

“Ring Roosts” are flocks of birds leaving their roosting location for their daily foraging for food just before sunrise

Data collected on August 10, 2006 5:25 to 6:15 AM

About 50 minutes of data is compressed into ~1.5 sec duration and replayed in a loop

- Radar observations with C-Band, WSR-88 (NEXRAD) NOAA, Pencil Beam Radar located at Green Bay, Wisconsin

Courtesy of NOAA
Spring Bird Migration from Cuba to US

Note intensity scale in dBZ

Data collected on April 28, 2002
~1 - 3 AM

About 2 hours of data is compressed into ~3 sec duration and replayed in a loop

• Radar observations with C-Band, WSR-88 (NEXRAD) NOAA, Pencil Beam Radar located at Key West, Florida
Bird Clutter

• General properties

• Bird populations and density
 – Migration / Localized travel
 Land / Ocean
 – Variations
 Geography, Height, Diurnal, Seasonal etc

• Radar Cross Section
 – Mean / Fluctuation properties

• Velocity / Doppler Distribution

• Effects of Birds on radar
 – Sensitivity Time Control (STC)
• In the late 1960s, Konrad, Hicks, and Dobson of JHU/APL accurately measured the radar cross section (RCS) of single birds and the RCS fluctuation properties.
 – Bird RCS fit a log-normal quite well
 – Like the Weibull distribution, it is a 2 parameter model that fits data with long tails

Adapted from Konrad, reference 12
<table>
<thead>
<tr>
<th></th>
<th>X-Band</th>
<th>S-Band</th>
<th>UHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grackle (male)</td>
<td>15.7</td>
<td>27</td>
<td>0.73</td>
</tr>
<tr>
<td>Grackle (female)</td>
<td>15.4</td>
<td>23.2</td>
<td>0.41</td>
</tr>
<tr>
<td>Sparrow</td>
<td>1.85</td>
<td>14.9</td>
<td>0.025</td>
</tr>
<tr>
<td>Pigeon</td>
<td>14.5</td>
<td>80.0</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Units of RCS measurement cm^2

Adapted from Konrad, reference 12
Distribution of Bird Radar Cross Section

Adapted from Eastwood, reference 8
Radar Cross Section Model

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Mean Cross Section (dBsm)</th>
<th>Standard Deviation of Log of Cross Section (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>–33</td>
<td>6</td>
</tr>
<tr>
<td>S</td>
<td>–27</td>
<td>6</td>
</tr>
<tr>
<td>L</td>
<td>–28</td>
<td>7.5</td>
</tr>
<tr>
<td>UHF</td>
<td>–47</td>
<td>15</td>
</tr>
<tr>
<td>VHF</td>
<td>–57</td>
<td>17</td>
</tr>
</tbody>
</table>

- Wavelength dependence
- Fluctuation statistics of cross section (log normal)

Adapted from Pollon, Reference 7
Bird Clutter

- General properties

- Bird populations and density
 - Migration / Localized travel
 - Land / Ocean
 - Variations
 - Geography, Height, Diurnal, Seasonal etc

- Radar Cross Section
 - Mean / Fluctuation properties

- Velocity / Doppler Distribution

- Effects of Birds on radar
 - Sensitivity Time Control (STC)
Distributions of the Radial Velocity of Birds

<table>
<thead>
<tr>
<th>Frequency of Occurrence</th>
<th>Radial Velocity (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>L-Band</td>
<td>0.05</td>
</tr>
<tr>
<td>X-Band</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Bird Clutter

• General properties

• Bird populations and density
 – Migration / Localized travel
 Land / Ocean
 – Variations
 Geography, Height, Diurnal, Seasonal etc

• Radar cross section
 – Mean / Fluctuation properties

• Velocity / Doppler distribution

• Effects of birds on radar
 – Sensitivity Time Control (STC)
Why Birds Are an Issue for Radars

![Detection Curve For an ASR](Image)

- **Birds**
 - 10^{-1} m^2 at 70 km
- **Insects**
 - 10^{-2} m^2 at 70 km
- **Clear Air Turbulance**
 - 10^{-3} m^2 at 70 km

Detectable Cross Section (m^2) vs **Range (km)**
Sensitivity Time Control

- These two targets have the same detectability, because in the radar equation:
 \[S \propto \frac{\sigma}{N R^4} \]
 - This false target issue can be mitigated by attenuating to the received signal by a factor which varies as \(1/R^4 \)
 - Can also be accomplished by injecting \(1/R^4 \) noise to the receive channel

- Radars that utilize range ambiguous waveforms, cannot use STC, because long range targets which alias down in range, would be adversely attenuated by the STC
 - For these waveforms, other techniques are used to mitigate the false target problem due to birds
Bird Example from Dallas-Fort Worth

Radar & Beacon
Beacon-Only
Radar Uncorrelated
Radar Correlated
Bird Clutter Issues - Summary

• Birds are actually moving point targets
 – Velocity usually less than 60 knots

• Mean radar cross section is small, but a fraction of bird returns fluctuate up to a high level (aircraft like)
 – Cross section is resonant at S-Band and L-Band

• The density of birds varies a lot and can be quite large
 – 10 to 1000 birds / square mile

• Birds cause a false target problem in many radars
 – This can be a significant issue for when attempting to detect targets with very low cross sections
Insects

- Insects can cause false detections and prevent detection of desired targets
- Density of insects can be many orders of magnitude greater than that of birds
- Insect flight path generally follows that of the wind
- Cross section can be represented as a spherical drop of water of the same mass
- Insect echoes broad side are 10 to 1,000 times than when viewed end on

Figure by MIT OCW. Adapted from Skolnik Reference 6
Mayfly Hatching

Data collection - June 30, 2006

La Crosse is the breeding ground of the mayfly population of the world

~10s of billions of them hatch, live, and die, over a 1 ½ day period, each year in late June / early July

Ephemeroptera (mayfly)

- Radar observations with C-Band, WSR-88 (NEXRAD) NOAA, Pencil Beam Radar located at La Crosse, Wisconsin (SW WI)

Courtesy of National Weather Service

 Courtesy of urtica
Summary

• A number of different types of radar clutter returns have been described
 – Ground, sea, rain, and birds

• These environmental and manmade phenomena will produce a variety of discrete and diffuse, moving and stationary false targets, unless they are dealt with effectively

• A number of signal and data processing techniques can be used to suppress the effect of these radar clutter returns.
References

References - Continued

Homework Problems

- From Skolnik, Reference 6
 - Problems 7-2, 7.4, 7.9, 7.11, 7.15, and 7.18